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Introduction: Since 2012, the California Department of Fish and Wildlife (CDFW) has conducted the California Coastal Pelagic Species Survey to document and estimate the biomass of Pacific Sardine and Northern Anchovy in nearshore waters. 

Currently, the survey uses an aircraft with an experienced spotter to locate fish schools, identify species, and estimate biomass. Due to increasing logistical challenges, in 2021 CDFW began exploring the feasibility of using uncrewed aerial 

systems (UAS) equipped with remote sensing technology and performing advanced image analyses to develop and apply a more repeatable biomass estimate calculation to ensure standardization of long-term datasets.

Goals:  1) Field – Locate and photograph schools of Pacific Sardine and Northern Anchovy.

2) Image Analyses – Use images captured by UAS in the field to calculate surface area and biomass of schools, delineate schools, and identify (ID) individual fish and species.

Methods – Field Deployment  

Fig 1. A) Primary UAS used was a DJI M210 equipped with the DJI X4S RGB camera, a 20MP 1-inch sensor with a 84°FOV; and the 

MicaSense Altum sensor capable of synchronized capture of multispectral, thermal, and RGB imagery, held by OU contractor Todd Van 

Epps during calibration; B) Smaller UAS, DJI Phantom 4, being calibrated by OU staff Matt Pickett, used for locating CPS; C)Matt 

recovering M210 as Todd pilots; D) Calibration of multispectral sensor by Todd holding M210 over a sardine bait barge; E) CPS observed 

from CDFW aircraft; F) CDFW Biologist Kirk Lynn catches CPS to validate UAS imagery; G) Northern Anchovy; H) Grid mission recon flight 

for school extent; I) Grid flight of school; J) M210 photographing entire school of CPS; Photos by Trung Nguyen

Conclusions and Future Research

Three field deployments in collaboration with Oceans Unmanned (OU): 

Sept 27-30, 2021 (Ventura/Oxnard); March 21-23, 2022 (Los Angeles);  May 25-26, 2022 

(Monterey Bay)1

Methods  & Results - Image Analyses

Single-image Photogrammetry

➢Surface area was measured in ImageJ for 9 

images of individual schools using each images’ 

Ground Sampling Distance (GSD) for scale (Fig 2A).

➢Biomass estimates by a trained spotter were 

captured for two schools. Surface area estimates 

from UAS imagery show promise in demonstrating 

school biomass (Fig 2B).

Fig 2. A) Images of schools were photographed at nadir (-90° from 

horizon) when possible. An error correction factor was used for non-

nadir images to calculate GSD; B) correlation between calculated 

surface area and spotter estimated biomass of two schools (A and B); 

school B was seen twice.

➢Use of UAS to survey CPS is a viable test bed for evaluating sensors and developing data 

collection and processing techniques; however, due to current regulatory and technical 

constraints it is not possible to solely use UAS for statewide surveys. Therefore, we are 

exploring how to apply the sensors and image analysis methods used with the UAS for use 

with a crewed fixed wing aircraft.

➢Single-image photogrammetry is a cost-effective and promising method for calculating 

surface area of a single school. More data are required to develop variables for deriving 

volume from calculated surface area such as bathymetry, and further ground truthing via a 

spotter pilot and fishing vessels is needed. We are also exploring the feasibility of using 

historical imagery with known spotter biomass estimates to infer a biomass calculation from 

surface area.

➢Multispectral image analysis successfully determined the presence of fish and delineated 

fish schools. Further research includes analyzing the costs and benefits of multispectral 

imagery versus RGB imagery and feasibility of scaling up multispectral analyses to larger 

datasets.

➢AI demonstrated some ability to correctly detect individual fish and further exploration holds 

promise to develop software systems capable of turning large amounts of aerial imagery 

into useable data for species ID, individual fish ID, and school detection3.
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Artificial Intelligence (AI)

Step 1: Images were split into 

hundreds of small "tiles" (Fig 4A, 

right) that could be processed 

by the AI algorithms2. 

Step 2: A subset of tiles were 

selected for training each 

algorithm method and manually 

marked2 (Fig 4B).

Fig 4. A) Full resolution images, >15 mil pixels, 

were split into tiles,100K pixels, B) Marking fish for 

Yolov4 (above) an object detection algorithm2 

and DeeplabV3 (below) is a semantic 

segmentation algorithm, which attempts to 

distinguish objects of interest from their 

background2; C) Performance of YoloV4 

(above) and DeeplabV3 (below) in detecting 

fish.

Step 3: After training, the AI 

algorithms were each given a new 

set of tiles to determine if each 

method could successfully detect 

individual fish (YoloV4, Fig 4C, top) 

or distinguish individual fish from the 

background (DeeplabV3, Fig 4C, 

bottom)2. 
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➢Overall, the performance of both 

AI algorithms were limited by the 

small sample size available (20-30 

tiles each)2. Glare and sunspots 

presented a challenge and 

impacted detection, particularly in 

the DeeplabV3 algorithm (Fig 4C).
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Figure 11 - Anchovy - a) Scaled green band with reflectance of 10-25% masked with NIR to remove 

glint, white-water, birds, sealions, etc. and with edge masking. Deeper blues correspond to shallower, 

or denser anchovy. b) Color zoomed inset subplot. c) Zoomed inset. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 - Anchovy - a) Scaled green band with reflectance of 10-25% masked with NIR to remove 

glint, white-water, birds, sealions, etc. and with edge masking. Deeper blues correspond to shallower, 

or denser anchovy. b) Color zoomed inset subplot. c) Zoomed inset. 

Multi-spectral Image Analysis
➢Color images were created from the Red, Green, Blue, and Near Infrared bands (NIR) of the multispectral sensor (Fig 3A, B). Then an NIR derived mask is 

applied to the color image that best visualizes the school in order to remove visual noise such as glare. The depth of fish and the surrounding seawater 

conditions will affect the reflectance in different color bands and thus how density is assessed (Fig 3C, D). 

Fig 3. A) Original full color spectrum image of an anchovy school; B) 
The green reflectance band best visualizes this anchovy school, in 
other images other color bands worked better; C) NIR mask over 
green reflectance band image of the anchovy school; D) The 
darker the shade of blue the greater thedensity of the school and 
the shallower, this is due to enhanced reflectance in the blue/green 
bands and the surrounding seawater outside the school being blue.
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